Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

نویسندگان

  • K Yoshida
  • NR Shiju
  • DR Brown
  • ED Boyes
چکیده

We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic s...

متن کامل

Identification of active Zr-WO(x) clusters on a ZrO2 support for solid acid catalysts.

Tungstated zirconia is a robust solid acid catalyst for light alkane (C(4)-C(8)) isomerization. Several structural models for catalytically active sites have been proposed, but the topic remains controversial, partly because of the absence of direct structural imaging information on the various supported WO(x) species. High-angle annular dark-field imaging of WO(3)/ZrO(2) catalysts in an aberra...

متن کامل

Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials∗.

The present status of Cs-corrected TEM/STEM is described from the viewpoint of the observation of nanomaterials. Characteristic features in TEM and STEM are explained using the experimental data obtained by our group and other research groups. Cs correction up to the 3rd-order aberration of an objective lens has already been established and research interest is focused on correcting the 5th-ord...

متن کامل

Effect of Calcination Temperature on the Alumina-Zirconia Nanostructures Prepared by Combustion Synthesis

In this research, a sol gel autocaombustion route has been proposed to synthesize alumina-zirconia composite powders, using ammonium bicarbonate as a new fuel. Then the effect of calcination temperature on phase transformation and crystallite sizes was investigated. To characterize the products XRD, TEM and BET analyses were used. XRD patterns of as-synthesized powder and calcined powders at 11...

متن کامل

TEM Investigations of Pt-NPs Loaded Fibrous Nano-Catalyst Support KCC-1

Nanocatalysts include solid-state heterogeneous catalysts whose dimensions are in the nanometer length scale [1]. This type of catalysts can decrease the energy usage in the chemical processes that ultimately leads to a greener chemical industry. There are many different types of supports that are used to carry these catalysts but generally the ones with higher surface area are preferred becaus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017